

Space Technologies

Version	2017-03
Effective from (date of when the course was developed)	2017-03

ECTS Credits	4
Level/Year	3
Teaching (contact) hours	54
Total learner managed hours (incl. self-work)	126
Total hours of student learning	180

Dro requisitos	Physics (electromagnetic theory) Radia physics (basics) Communication and signal	
Pre-requisites	Physics (electromagnetic theory), Radio physics (basics), Communication and signal	
	processing (basics)	
Co-requisites	None	
Alignment to	Basic knowledge of physics. At least 3 years of University level studies (physics-connected	
graduate	directions)	
profiles	Fluent English	
Course aim	The program aims to provide advanced techniques of space engineering and	
	understanding the core physics principles related to space exploration. Space industry	
	problems are also considered during the program in addition to technology topics.	
Indicative	• Theoretical astrophysics,	
Course content	 Space technologies basics, 	
	 Practical skills on signal processing, 	
	• Satellite design,	
	• Space engineering,	
	 Electronics and nanomaterials for space applications. 	

LEARNING OUTCOMES

On s	On successful completion of this course students will be able to:		
1	Work in satellites engineering field,		
2	Make calculations for space communication techniques,		
3	Analise space hardware and equipment,		
4	Study advanced astronomy,		
5	Plan nanosatellite mission		

ASSESSMENTS

Basis of assessment	Achievement based assessment			
Methods of assessment		Learning Outcomes	Pass criteria (Minimum)	% Weightings
Final project presentation		Max score 80	40	50
Portfolio – summativ	ve of practices	Max score 20	10	50

REQUIREMENTS FOR SUCCESSFUL COURSE COMPLETION

Requirements Attend at least half lectures and practices. Successfully present final project

RESULTS

Assessment results Results for assessments are given in points marks

International Polytechnic SUMMER & WINTER SCHOOLS

Course results	Students will learn techniques of space engineering and the core physics principles	
	related to space exploration. Space industry problems are also considered during the	
	program in addition to technology topics. The theoretical courses cover astrophysics,	
	space technology and physics. Students will train their practical skills during an	
	interactive business simulation workshop.	

LEARNING AND TEACHING

Learning and	Active learning, Collaborative learning, Problem-based learning, Interdisciplinary	
teaching	learning	
approaches		
Learning and	Textbooks, journals and library resources; use of Internet; computer software	
teaching resources	Software requirements:	
	MS Teams (free access will be	
	provided for all students),	
	• MATLAB,	
	Microsoft Office 2007 or newer,	
	alternative: LibreOffice.	
Learner managed	Completion of course work, set assignments	
activities	Reading of course materials	
	Study group work	
	Preparation for classes	
	Practicing relevant skills/methods/techniques	
	Self-evaluation of course work	
	Gathering relevant contextual information/ issues/ideas to build knowledge of the	
	subject	