

Medicine and Machine Learning

Version Effective from (date of when the course was developed)	01/01/25
Course Credits given	4 ECTS
Level/Year	Bachelor, Master and
	PhD students
Teaching hours	40
Workplace learning hours	60
Total learner managed hours	50
Total hours of student learning	100

Pre-	The course is open for Bachelor, Master and PhD students with the
requisites	background in Information Technology and Computer Science,
	Mathematical Science or equivalent skills and knowledge.
Alignment to	Bachelor (Undergraduate diploma) of Information Technology
graduate	Specialist Diploma in Information Technology
profiles	Master (Graduate diploma) in Information Technology
Course aim	This course is for students with the knowledge and skills to analyse
	medical data using Machine Learning. By the end of the course, students
	will be able to apply ML techniques to practical problems in medical data
	analysis, with examples on ECG and Parkinson's disease data.
Indicative	Introduction to Medical Data and Machine Learning in Healthcare
Course	Overview of Neural Networks and Convolutional Neural
content	Notworks
	Networks
	Theory and Applications of EMG Data in Medical Analysis
	Introduction to Heart Anatomy, Heart Diseases, and ECG Data
	Practical Applications of ECG Data Analysis with Python
	Brain Anatomy, Neurological Diseases, and EEG Data Analysis
	EEG Data Processing and Machine Learning Applications
	Understanding Parkinson' s Disease and Its Data Challenges
	Machine Learning Techniques for Analysing Parkinson' s Disease

International Polytechnic SUMMER & WINTER SCHOOLS

Data

- Practical Applications of Convolutional Neural Networks in Medical Data
- Workflow for Medical Data Analysis with Python
- Ethical Considerations in Medical Data and Machine Learning

LEARNING OUTCOMES

On successful completion of this course students will be able to:

- **1** Analyse and process medical data using Machine Learning techniques.
- 2 Apply Machine Learning algorithms to real-world datasets such as EMG, ECG, EEG,
- and Parkinson's disease data.
- **3** Develop and implement Python-based solutions for medical data analysis.
- **4** Understand and utilize neural networks, including CNNs, for medical data applications.

ASSESSMENTS

Basis of	Achievement based as	sessment	
assessment	Final project: Real-Wor	ld application	
	Daily Quizzes		
Methods of	Learning	Pass criteria	% Weightings
assessment	Outcomes	(Minimum)	
Final project	2,3	Error >85%	50%
Daily Quizzes	1,4	0.7	50%

REQUIREMENTS FOR SUCCESSFUL COURSE COMPLETION

Requirements	Mark of 70% or more in every summative assessment
	Gain a course result of C (50%) or higher

RESULTS

Assessment results	Results for assessments are given in percentage marks
Course results	Jupyter notebook with final project & teachers review, theoretical materials, in-class practical applications.

LEARNING AND TEACHING

Learning and	Learning process based on combining of 4 main types of materials:
-	

International Polytechnic SUMMER & WINTER SCHOOLS

teaching approaches	 Theoretical lectures (Intuitions, ideas and algorithms description) Workshops (review of realization of described concepts and
	practical tasks)
	• Self education (Learning of an extra academic materials, given
	by lecturers) + Squeezes for self-control
	• Final project (Based on learned materials and gained skills)
	Learning process is based on presenting the materials by teachers,
	discussing the materials and answering to students questions
Learning and	Manuals, academic journals; use of Internet; software; platforms;
teaching	individual consultations with lecturers
resources	
Learner	 Completion of course work, set assignments/projects
managed	Reading of course materials
activities	Homework
	 Discussions with colleagues/subject matter experts
	Review application of information to course work
	Practicing relevant practical and technical
	skills/methods/techniques
	Self-evaluation of course work
	Gathering relevant contextual information/ issues/ideas to build
	knowledge of the subject