



# Machine Learning: Theory and Application

| Version                                                | 2020/1                   |
|--------------------------------------------------------|--------------------------|
| Effective from (date of when the course was developed) | 01/10/19                 |
|                                                        |                          |
| Course Credits given                                   | 4 ECTS                   |
| Level/Year                                             | Bachelor, Master and PhD |
|                                                        | students                 |
| Teaching (contact) hours                               | 44                       |
| Total learner managed hours (incl. self-work)          | 100                      |
| Total hours of student learning                        | 144                      |

| Pre-requisites         | The course is open for Bachelor, Master and PhD students with the background in<br>Information Technology and Computer Science, Mathematical Science or equivalent     |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Alignmente             | skills and knowledge.                                                                                                                                                  |
| Alignment to           | Bachelor (Undergraduate diploma) of Information Technology                                                                                                             |
| graduate               | Specialist Diploma in Information Technology                                                                                                                           |
| profiles<br>Course aim | Master (Graduate diploma) in Information Technology                                                                                                                    |
| Course aim             | The course introduces students to the theoretical foundations of machine learning                                                                                      |
|                        | and data science, as well as to the solution of real business problems with the help of computer vision, classification and regression algorithms. The optimal balance |
|                        | between theory and practice provides both a good foundation and the ability to apply                                                                                   |
|                        | knowledge in practice.                                                                                                                                                 |
| Indicative             | Introduction to Artificial intelligence and Machine Learning;                                                                                                          |
| Course content         |                                                                                                                                                                        |
| course content         | <ul> <li>Supervised and unsupervised learning;</li> </ul>                                                                                                              |
|                        | <ul> <li>Overfitting and underfitting;</li> </ul>                                                                                                                      |
|                        | Regularization in ML;                                                                                                                                                  |
|                        | Model Validation metrics and tactics;                                                                                                                                  |
|                        | <ul> <li>Machine learning algorithms classification;</li> </ul>                                                                                                        |
|                        | Data processing techniques;                                                                                                                                            |
|                        | Machine learning application workflow;                                                                                                                                 |
|                        | Hyperparameters tuning tactics;                                                                                                                                        |
|                        | <ul> <li>Binary classification and logistic regression;</li> </ul>                                                                                                     |
|                        | Shallow Neural networks;                                                                                                                                               |
|                        | Deep Neural networks;                                                                                                                                                  |
|                        | Convolutional Neural Networks;                                                                                                                                         |
|                        | Deep Sequential Neural Networks.                                                                                                                                       |
|                        |                                                                                                                                                                        |

## LEARNING OUTCOMES

| On successful completion of this course students will be able to: |                                                                                |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------|
| 1                                                                 | Apply Machine Learning algorithms to solve classification and regression tasks |
| 2                                                                 | Work with a Machine Learning and Data Science teams                            |
| 3                                                                 | Understand all the basic topics of modern Machine Learning field               |
| 4                                                                 | Manage the training process of ML models and improve their performance.        |

## ASSESSMENTS

| Basis of assessment | Achievement based assessment          |
|---------------------|---------------------------------------|
|                     | Final project: Real-World application |
|                     | Daily Quizzes                         |



International Polytechnic SUMMER & WINTER SCHOOLS



| Methods of<br>assessment | Learning Outcomes | Pass criteria<br>(Minimum) | % Weightings |
|--------------------------|-------------------|----------------------------|--------------|
| Final project            | 2,3               | Error >85%                 | 50%          |
| Daily Quizzes            | 1,4               | 0.7                        | 50%          |

### **REQUIREMENTS FOR SUCCESSFUL COURSE COMPLETION**

| Requirements | Mark of 70% or more in every summative assessment |
|--------------|---------------------------------------------------|
|              | Gain a course result of C (50%) or higher         |

| RESULTS            |                                                                                   |
|--------------------|-----------------------------------------------------------------------------------|
| Assessment results | Results for assessments are given in percentage marks                             |
| Course results     | Jupyter notebook with final project & teachers review, theoretical materials, in- |
|                    | class practical applications.                                                     |

### LEARNING AND TEACHING

| Learning and                  | Learning process based on combining of 4 main types of materials:                                                                 |
|-------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|
| teaching                      | <ul> <li>Theoretical lectures (Intuitions, ideas and algorithms description)</li> </ul>                                           |
| approaches                    | <ul> <li>Workshops (review of realization of described concepts and practical tasks)</li> </ul>                                   |
|                               | <ul> <li>Self education (Learning of an extra academic materials, given by<br/>lecturers) + Squeezes for self-control</li> </ul>  |
|                               | <ul> <li>Final project (Based on learned materials and gained skills)</li> </ul>                                                  |
|                               | Learning process is based on presenting the materials by teachers, discussing the materials and answering to students questions   |
| Learning and                  | Manuals, academic journals; use of Internet; software; platforms; individual                                                      |
| teaching resources            | consultations with lecturers                                                                                                      |
| Learner managed<br>activities | <ul> <li>Completion of course work, set assignments/projects</li> <li>Reading of course materials</li> <li>Homework</li> </ul>    |
|                               | <ul> <li>Discussions with colleagues/subject matter experts</li> </ul>                                                            |
|                               | <ul> <li>Review application of information to course work</li> </ul>                                                              |
|                               | <ul> <li>Practicing relevant practical and technical skills/methods/techniques</li> <li>Self-evaluation of course work</li> </ul> |
|                               | <ul> <li>Gathering relevant contextual information/ issues/ideas to build knowledge of<br/>the subject</li> </ul>                 |