

Innovative materials

Version	2022/1
Effective from (date of when the course was developed)	27/06/2022

ECTS Credits	2 ECTS
Level/Year	Bachelor, Master and PhD
	students
Teaching (contact) hours	20
Total learner managed hours (incl. self-work)	52
Total hours of student learning	72

Pre-requisites	Knowledge of the following disciplines is desirable:
	 General physics: mechanics, optics, electrodynamics.
	 Atomic scale structure of materials.
	 Basics of chemistry.
Co-requisites	None
Alignment to	This course contributes to achievement of the graduate outcomes of the following
graduate	qualifications:
profiles	 Bachelor in Physics
	 Master of Science in Physics
	 Certificate in Physics
Course aim	The course is devoted to the fundamental properties and applications of nanostructured
	materials, including composite materials and 2D materials. This includes the analysis and
	modeling of properties, the main methods of synthesis and characterization, as well as
	areas of practical application of nanostructured materials.
Indicative	Nanostructured materials. Composite nanomaterials - basic concepts and definitions.
Course content	How the properties of materials change at the nanoscale. 2D materials.
	Modeling the properties of nanostructured composite materials. Effective medium
	theory. Nanomechanics of composite materials. Modeling properties of 2-D materials.
	Practical application of nanostructured composite materials. Application of composite
	materials with plasmonic nanoparticles. Functionalization of graphene-based materials,
	and their industrial application. Application of nanostructured materials in extreme
	conditions.

LEARNING OUTCOMES

Ons	On successful completion of this course students will be able to:	
1	Understand the physical and chemical bases for the production of composite materials.	
2	Describe the characteristics of nanostructured composite materials.	
3	Describe the main methods for obtaining and characterization of composite materials.	
4	Demonstrate knowledge of the main areas of practical application of nanostructured composite	
4	materials.	
5	Perform calculations to obtain the characteristics of nanostructured composite materials.	

ASSESSMENTS

Basis of assessment Achievement based assessment

International Polytechnic SUMMER & WINTER SCHOOLS

Methods of assessment	Learning Outcomes	Pass criteria (Minimum)	% Weightings
Final test	1,2,3,4	50%	70%
Summative of practices	5	50%	30%

REQUIREMENTS FOR SUCCESSFUL COURSE COMPLETION

Requirements	Mark of 50% or more in every summative assessment

RESULTS

Assessment results	The results of the assessments are given in percentage points
Course results	 Each summative assessment is assigned a percentage weight. The overall grade for the course is calculated by adding up the weighted results for all summative assessments.

LEARNING AND TEACHING

Learning and	Lectures, group discussions, tutorials, exercises, presentations, research.
teaching	
approaches	
Learning and	Textbooks, journals and library resources, use of Internet, computer software.
teaching resources	
Learner managed	Completion of coursework and assignments
activities	Reading course materials
	Preparation for classes
	Homework
	Application of relevant practical skills/methods/techniques
	Gathering relevant information/questions/ideas to broaden knowledge of the
	subject