

International Polytechnic SUMMER & WINTER SCHOOLS

Big Data: Theory and Application

Version	Version 2020/1		
Effective from (date of when the course was developed)		06/11/2020	
Course Credits given		4 ECTS	
Level/Year		Bachelor, Master and PhD	
		students	
Teaching (contact) hours		54	
Total learner managed hours (incl. self-work)		90	
Total hours of stu	dent learning	144	
Pre-requisites	Knowledge of general technical disciplines is desirable:		
	- Linear algebra: vectors, matrices, and their products, de	erivative;	
	- Probability theory: random events, mathematical exped	ctation, variance;	
	 Basic programming knowledge: Python/R, SOLID, SQL, § 	git, docker.	
Co-requisites	None		
Alignment to	This programme contributes to achievement of the grad	uate outcomes of the	
graduate	following qualifications:		
profiles	 Bachelor of Information Technology 		
	 Graduate Diploma in Information Technology 		
	Diploma in Information Technology		
Course aim	The program includes fundamental and applied aspects	of research in the field of big	
	data processing; development of innovative technologi	es and software solutions for	
	solving problems of analysis, pre-processing, forecasting	and other applied tasks.	
	Students interact with specialized software, create new	v solutions and mathematical	
	models in the field of intelligent big data processing.		
	leams of students study and demonstrate general and	highly specialized methods of	
	data analysis, demonstrate skills in developing complex	models. They use the latest	
Indicativa	Content may include but is not limited to:		
Course content	Content may include but is not limited to:		
course content	Introduction to Big Data Working with Big Data		
	WORKING WITH BIG Data	ia data	
	 Systems for collecting, processing and storing bl Mashing Learning 	guala	
	Iviachine Learning		

LEARNING OUTCOMES

On	successful completion of this course students will be able to:
1	To understand modern software development tools; software that allows you to solve practical
	problems of processing large amounts of data
	To know modern information technologies used in science and industry; hardware and software
2	complexes and systems used in high-load big data processing systems; current trends in the
	development of information technologies
	To choose, to create complexes and to operate software and hardware in the created computing
3	and information systems and network structures; to set and solve software problems related to the
	choice of architectural elements in the design of high-load systems

ASSESSMENTS

Basis of assessment	Achievement based assessment

International Polytechnic SUMMER & WINTER SCHOOLS

Methods of assessment	Learning Outcomes	Pass criteria (Minimum)	% Weightings
Summative review	1, 2	50%	40%
Summative of project work	3	50%	60%

REQUIREMENTS FOR SUCCESSFUL COURSE COMPLETION

Requirements	Mark of 50% or more in every summative assessment
	Gain a course result of 50% or higher

RESULTS

Assessment results	Results for assessments are given in percentage marks
Course results	 Individual assessments may cover one or more of the learning outcomes Each summative assessment is assigned a percentage weighting The overall percentage mark for the course is calculated by adding the weighted results for all summative assessments

LEARNING AND TEACHING

Learning and	Lectures, group discussions, tutorials, learner managed activities, laboratories,
approaches	presentations, research, projects and case studies.
Learning and	Textbooks, journals and manuals; use of Internet; laboratory and specialist
teaching resources	software:
	Jupyter Notebook
	 JetBrains Pycharm Community Edition
	• Apache Hadoop
	 SQL and NoSQL server
Learner managed	 Completion of course work, set assignments/projects
activities	 Reading of course materials
	 Study group work
	 Preparation for classes
	Homework
	Research
	 Discussions with colleagues/subject matter experts
	 Review application of information to project work
	 Practising relevant practical and technical skills/methods/techniques
	 Presentation and self-evaluation of project work
	• Gathering relevant contextual information/ issues/ideas to build knowledge of
	the subject