



# Advances in Nuclear Fusion Science

| Version                                       |                                                                                                  | 2022/1                          |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------|
| Effective from (da                            | ate of when the course was developed)                                                            | 15 June 2022                    |
|                                               |                                                                                                  |                                 |
| ECTS Credits                                  |                                                                                                  | 2                               |
| Level/Year                                    |                                                                                                  |                                 |
| Teaching (contact) hours                      |                                                                                                  | 18                              |
| Total learner managed hours (incl. self-work) |                                                                                                  | 54                              |
| Total hours of stu                            | ident learning                                                                                   | 72                              |
|                                               |                                                                                                  |                                 |
| Pre-requisites                                | Knowledge of Calculus and General Physics corresponding to a Master's degree program             |                                 |
|                                               | in science, technology, engineering, mathematics. Know                                           | ledge of fundamentals of plasma |
|                                               | physics and basic nuclear fusion science. Good command                                           | d of English. All classes and   |
|                                               | extracurricular activities are conducted in English.                                             |                                 |
| Co-requisites                                 | None                                                                                             |                                 |
| Alignment to                                  | This course contributes to achievement of the graduate outcomes of the following qualifications: |                                 |
| graduate                                      | Master of Physics                                                                                |                                 |
| profiles                                      | Graduate Diploma in Physics                                                                      |                                 |
|                                               | Diploma in Physics                                                                               |                                 |
|                                               | Ph.D. in Physics                                                                                 |                                 |
| Course aim                                    | The purpose of the course is to provide the students with the possibility to learn directly      |                                 |
|                                               | from the authors of contemporary scientific publications                                         | contributing to the             |
|                                               | development of the physics basis of the controlled nucle                                         | ar fusion.                      |
| Indicative                                    | Synergy of Fusion and Fission - prospective development option.                                  |                                 |
|                                               |                                                                                                  |                                 |

| Course content | Distributions of nuclear fusion products in plasma                                        |  |
|----------------|-------------------------------------------------------------------------------------------|--|
|                | Fast ion diagnostics in tokamaks                                                          |  |
|                | Current drive by microwaves                                                               |  |
|                | Heavy ion beam probing - a tool to study electric fields and turbulence in fusion plasmas |  |
|                | Advanced application of Doppler backscattering to study plasma oscillatory processes      |  |
|                | Quasineutrality. Ambipolar Diffusion.                                                     |  |
|                | Review of lithium technologies in fusion programme.                                       |  |
|                | Disruption mitigation in tokamak reactors.                                                |  |

# LEARNING OUTCOMES

| On successful completion of this course students will be able to: |                                                                                           |  |
|-------------------------------------------------------------------|-------------------------------------------------------------------------------------------|--|
| 1                                                                 | Describe contemporary research activities on fusion-fission hybrid systems                |  |
| 2                                                                 | Understand energy spectra of nuclear fusion products, reactor power and neutron yield     |  |
| 3                                                                 | Describe the mechanisms of current generation by microwaves                               |  |
| 4                                                                 | Understand principles of advanced plasma diagnostics such as fast particles, HIBP and DBS |  |
| 5                                                                 | Navigate the physics basis of lithium technologies and disruption mitigation in tokamaks  |  |

# ASSESSMENTS

**Basis of assessment** 





| Methods of assessment              | Learning<br>Outcomes | Pass criteria<br>(Minimum) | % Weightings |
|------------------------------------|----------------------|----------------------------|--------------|
| Summative review                   | 1, 2, 3              | 40%                        | 60%          |
| Portfolio – summative of practices | 4, 5                 | 40%                        | 40%          |

## **REQUIREMENTS FOR SUCCESSFUL COURSE COMPLETION**

| Requirements | Mark of 40% or more in every summative assessment |
|--------------|---------------------------------------------------|
| Requirements |                                                   |

### RESULTS

| Assessment results | Results for assessments are given in percentage marks                                                                                                                                                                                                                                             |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Course results     | <ul> <li>Individual assessments may cover one or more of the learning outcomes.</li> <li>Each summative assessment is assigned a percentage weighting.</li> <li>The overall percentage mark for the course is calculated by adding the weighted results for all summative assessments.</li> </ul> |

#### LEARNING AND TEACHING

| Learning and       | Lectures and group discussions, learner managed activities.                               |
|--------------------|-------------------------------------------------------------------------------------------|
| teaching           |                                                                                           |
| approaches         |                                                                                           |
| Learning and       | Textbooks, journals and library resources; use of Internet; computer software.            |
| teaching resources |                                                                                           |
| Learner managed    | Completion of course work                                                                 |
| activities         | Reading of course materials                                                               |
|                    | Study group work                                                                          |
|                    | Preparation for classes                                                                   |
|                    | <ul> <li>Practicing relevant skills/methods/techniques</li> </ul>                         |
|                    | Self-evaluation of course work                                                            |
|                    | Gathering relevant contextual information/ issues/ideas to build knowledge of the subject |